computer virus
A computer is a type of malicious software that, when executed, replicates itself by modifying other computer programs and inserting its own code. When this replication succeeds, the affected areas are then said to be "infected" with a computer virus.
Virus writers use social engineering deceptions and exploit detailed knowledge of security vulnerabilities to initially infect systems and to spread the virus. The vast majority of viruses target systems running Microsoft Windows, employing a variety of mechanisms to infect new hosts, and often using complex anti-detection/stealth strategies to evade antivirus software.
Motives for creating viruses can include seeking profit (e.g., with ransomware), desire to send a political message, personal amusement, to demonstrate that a vulnerability exists in software, for sabotage and denial of service, or simply because they wish to explore cybersecurity issues, artificial life and evolutionary algorithms.
Computer viruses currently cause billions of dollars' worth of economic damage each year, due to causing system failure, wasting computer resources, corrupting data, increasing maintenance costs, etc. In response, free, open-source antivirus tools have been developed, and an industry of antivirus software has cropped up, selling or freely distributing virus
protection to users of various operating systems.
As of 2005, even though no currently existing antivirus software was able to uncover all computer viruses (especially new ones), computer security researchers are actively searching for new ways to enable antivirus solutions to more effectively detect emerging viruses, before they have already become widely distributed.
The term "
virus" is also commonly, but erroneously, used to refer to other types of malware. "Malware" encompasses computer viruses along with many other forms of malicious software, such as computer "worms", ransomware, spyware, adware, trojan horses, keyloggers, rootkits, bootkits, malicious Browser Helper Object (BHOs), and other malicious software.
The majority of active malware threats are actually trojan horse programs or computer worms rather than computer viruses. The term computer virus, coined by Fred Cohen in 1985, is a misnomer. Viruses often perform some type of harmful activity on infected host computers, such as acquisition of hard diskspace or central processing unit (CPU) time, accessing private information (e.g., credit card numbers), corrupting data, displaying political or humorous messages on the user's screen, spamming their e-mail contacts, logging their keystrokes, or even rendering the computer useless.
However, not all viruses carry a destructive "payload" and attempt to hide themselves—the defining characteristic of viruses is that they are self-replicating computer programs which modify other software without user consent.
Early academic work on self-replicating programs:
The first academic work on the theory of self-replicating computer programs was done in 1949 by John von Neumann who gave lectures at the University of Illinois about the "Theory and Organization of Complicated Automata". The work of von Neumann was later published as the "Theory of self-reproducing automata".
In his essay von Neumann described how a computer program could be designed to reproduce itself.[19] Von Neumann's design for a self-reproducing computer program is considered the world's first computer virus, and he is considered to be the theoretical "father" of computer virology.
In 1972, Veith Risak, directly building on von Neumann's work on self-replication, published his article "Selbstreproduzierende Automaten mit minimaler Informationsübertragung" (Self-reproducing automata with minimal information exchange). The article describes a fully functional virus written in assembler programming language for a SIEMENS 4004/35 computer system.
In 1980 Jürgen Kraus wrote his diplom thesis "Selbstreproduktion bei Programmen" (Self-reproduction of programs) at the University of Dortmund. In his work Kraus postulated that computer programs can behave in a way similar to biological viruses.
Operations and functions:
Parts:
A viable computer virus must contain a search routine, which locates new files or new disks which are worthwhile targets for infection. Secondly, every computer virus must contain a routine to copy itself into the program which the search routine locates. The three main virus parts are:
Infection mechanism:
Infection mechanism (also called 'infection vector'), is how the virus spreads or propagates. A virus typically has a search routine, which locates new files or new disks for infection.
Trigger:
The trigger, which is also known as logic bomb, is the compiled version that could be activated any time an executable file with the virus is run that determines the event or condition for the malicious "payload" to be activated or delivered such as a particular date, a particular time, particular presence of another program, capacity of the disk exceeding some limit, or a double-click that opens a particular file.
Payload:
The "payload" is the actual body or data that perform the actual malicious purpose of the virus. Payload activity might be noticeable (e.g., because it causes the system to slow down or "freeze"), as most of the time the "payload" itself is the harmful activity, or some times non-destructive but distributive, which is called Virus hoax.
Phases:
Virus phases is the life cycle of the computer virus, described by using an analogy to biology. This life cycle can be divided into four phases:
Dormant phase:
The virus program is idle during this stage. The virus program has managed to access the target user's computer or software, but during this stage, the virus does not take any action. The virus will eventually be activated by the "trigger" which states which event will execute the virus, such as a date, the presence of another program or file, the capacity of the disk exceeding some limit or the user taking a certain action (e.g., double-clicking on a certain icon, opening an e-mail, etc.). Not all viruses have this stage.
Propagation phase:
The virus starts propagating, that is multiplying and replicating itself. The virus places a copy of itself into other programs or into certain system areas on the disk. The copy may not be identical to the propagating version; viruses often "morph" or change to evade detection by IT professionals and anti-virus software. Each infected program will now contain a clone of the virus, which will itself enter a propagation phase.
Triggering phase:
A dormant virus moves into this phase when it is activated, and will now perform the function for which it was intended. The triggering phase can be caused by a variety of system events, including a count of the number of times that this copy of the virus has made copies of itself.
Execution phase:
This is the actual work of the virus, where the "payload" will be released. It can be destructive such as deleting files on disk, crashing the system, or corrupting files or relatively harmless such as popping up humorous or political messages on screen.

Comments
Post a Comment
Please tell the feedback of my blog